Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation.
نویسندگان
چکیده
Hyperoxia causes cell injury and death associated with reactive oxygen species formation and inflammatory responses. Recent studies show that hyperoxia-induced cell death involves apoptosis, necrosis, or mixed phenotypes depending on cell type, although the underlying mechanisms remain unclear. Using murine lung endothelial cells, we found that hyperoxia caused cell death by apoptosis involving both extrinsic (Fas-dependent) and intrinsic (mitochondria-dependent) pathways. Hyperoxia-dependent activation of the extrinsic apoptosis pathway and formation of the death-inducing signaling complex required NADPH oxidase-dependent reactive oxygen species production, because this process was attenuated by chemical inhibition, as well as by genetic deletion of the p47(phox) subunit, of the oxidase. Overexpression of heme oxygenase-1 prevented hyperoxia-induced cell death and cytochrome c release. Likewise, carbon monoxide, at low concentrations, markedly inhibited hyperoxia-induced endothelial cell death by inhibiting cytochrome c release and caspase-9/3 activation. Carbon monoxide, by attenuating hyperoxia-induced reactive oxygen species production, inhibited extrinsic apoptosis signaling initiated by death-inducing signal complex trafficking from the Golgi apparatus to the plasma membrane and downstream activation of caspase-8. We also found that carbon monoxide inhibited the hyperoxia-induced activation of Bcl-2-related proteins involved in both intrinsic and extrinsic apoptotic signaling. Carbon monoxide inhibited the activation of Bid and the expression and mitochondrial translocation of Bax, whereas promoted Bcl-X(L)/Bax interaction and increased Bad phosphorylation. We also show that carbon monoxide promoted an interaction of heme oxygenase-1 with Bax. These results define novel mechanisms underlying the antiapoptotic effects of carbon monoxide during hyperoxic stress.
منابع مشابه
Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
Objective(s): Neurodegenerative diseases have been associated with glutamatergic dysfunction. Berberine, an isoquinoline alkaloid broadly present in different medicinal herbs, has been reported to have neuroprotective effect. In the present study, the effects of berberine against glutamate-induced oxidative damage and apoptosis were investigated. Materials and Methods: The cultured PC12 and N2a...
متن کاملPortulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملHeme oxygenase-1 deficiency accelerates formation of arterial thrombosis through oxidative damage to the endothelium, which is rescued by inhaled carbon monoxide.
Heme oxygenase (HO)-1 (encoded by Hmox1) catalyzes the oxidative degradation of heme to biliverdin and carbon monoxide. HO-1 is induced during inflammation and oxidative stress to protect tissues from oxidative damage. Because intravascular thrombosis forms at sites of tissue inflammation, we hypothesized that HO-1 protects against arterial thrombosis during oxidant stress. To investigate the d...
متن کاملGreen tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity
Objective(s):Many studies have reported that tea consumption decreases cardiovascular risk, but the mechanisms remain unclear. Green tea is known to have potent antioxidant and free radical scavengingactivities. This study aimed to investigate whether green tea extract (GTE) can protect endothelial progenitors cells (EPCs) against oxidative stress through antioxidant mechanisms. Materials and M...
متن کاملC-Peptide Prevents Hyperglycemia-Induced Endothelial Apoptosis Through Inhibition of Reactive Oxygen Species–Mediated Transglutaminase 2 Activation
C-peptide is a bioactive peptide with a potentially protective role in diabetes complications; however, its molecular mechanism of protection against cardiovascular damage caused by hyperglycemia-induced apoptosis remains unclear. We investigated the protective mechanism of C-peptide against hyperglycemia-induced apoptosis using human umbilical vein endothelial cells and streptozotocin diabetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 282 3 شماره
صفحات -
تاریخ انتشار 2007